首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2958篇
  免费   774篇
  国内免费   259篇
电工技术   27篇
综合类   77篇
化学工业   927篇
金属工艺   123篇
机械仪表   19篇
建筑科学   6篇
矿业工程   8篇
能源动力   248篇
轻工业   3篇
石油天然气   13篇
武器工业   1篇
无线电   1102篇
一般工业技术   1378篇
冶金工业   20篇
原子能技术   5篇
自动化技术   34篇
  2024年   13篇
  2023年   181篇
  2022年   105篇
  2021年   227篇
  2020年   179篇
  2019年   177篇
  2018年   185篇
  2017年   206篇
  2016年   256篇
  2015年   258篇
  2014年   305篇
  2013年   290篇
  2012年   224篇
  2011年   279篇
  2010年   190篇
  2009年   218篇
  2008年   163篇
  2007年   133篇
  2006年   117篇
  2005年   71篇
  2004年   41篇
  2003年   34篇
  2002年   28篇
  2001年   9篇
  2000年   24篇
  1999年   7篇
  1998年   15篇
  1997年   4篇
  1996年   10篇
  1995年   7篇
  1994年   5篇
  1993年   6篇
  1992年   6篇
  1991年   1篇
  1990年   4篇
  1989年   7篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1951年   1篇
排序方式: 共有3991条查询结果,搜索用时 15 毫秒
11.
Microcystins (MCs) is a harmful toxin generated by blue-green algae in water, which has seriously threatened the ecological safety of water and human body. It is urgent to develop new catalysts and techniques for the degradation of MCs. A feasible electrostatic self-assembly method was carried out to synthesize BiVO4/g-C3N4 heterojunction photocatalyst with highly efficient photocatalytic ability, where BiVO4 nanoplates with exposed {010} facets anchored to the g-C3N4 ultrathin nanosheets. The morphology and microstructure of the heterojunction photocatalysts were identified by XRD, SEM, TEM, XPS, and BET. The g-C3N4 nanosheets have huge surface area over 200 m2/g and abundant mesoporous ranging from 2-20 nm, which provides tremendous contact area for BiVO4 nanoplates. Meanwhile, the introduction of BiVO4 led to red-shift of the absorption spectrum of photocatalyst, which was characterized by UV-vis diffuse reflection spectroscopy (DRS). Compared with pure BiVO4 and g-C3N4, the BiVO4/g-C3N4 heterojunction shows a drastically enhanced photocatalytic activity in degradation of microcystin-LR (MC-LR) in water. The MC-LR could be removed within 15 minutes under the optimal ratio of BiVO4/g-C3N4. The outstanding performance of the photocatalyst is attributed to synergetic effect of interface Z-scheme heterojunction and high active facets {010} of BiVO4 nanoplates, which provides an efficient transfer pathway to separate photoinduced carriers meanwhile endows the photocatalysts with strong redox ability.  相似文献   
12.
13.
Over the past few decades, crystalline silicon solar cells have been extensively studied due to their high efficiency, high reliability, and low cost. In addition, these types of cells lead the industry and account for more than half of the market. For the foreseeable future, Si will still be a critical material for photovoltaic devices in the solar cell industry. In this paper, we discuss key issues, cell concepts, and the status of recent high-efficiency crystalline silicon solar cells.  相似文献   
14.
15.
A new ordered structure of the C60 derivative PCBM ([6‐6]‐phenyl C61‐butyric acid methyl ester) is obtained in thin films based on the blend PCBM:regioregular P3HT (poly(3‐hexylthiophene)). Rapid formation of needlelike crystalline PCBM structures of a few micrometers up to 100 μm in size is demonstrated by submitting the blended thin films to an appropriate thermal treatment. These structures can grow out to a 2D network of PCBM needles and, in specific cases, to spectacular PCBM fans. Key parameters to tune the dimensions and spatial distribution of the PCBM needles are blend ratio and annealing conditions. The as‐obtained blended films and crystals are probed using atomic force microscopy, transmission electron microscopy, selected area electron diffraction, optical microscopy, and confocal fluorescence microscopy. Based on the analytical results, the growth mechanism of the PCBM structures within the film is described in terms of diffusion of PCBM towards the PCBM crystals, leaving highly crystalline P3HT behind in the surrounding matrix.  相似文献   
16.
Calculations and detailed first principle and thermodynamic analyses have been performed to understand the formation mechanism of K2Ti6O13 nanowires (NWs) by a hydrothermal reaction between bulk Na2Ti3O7 crystals and a KOH solution. It is found that direct ion exchange between K+ and Na+ plus H+ interactions with [TiO6] octahedra in Na2Ti3O7 promote the formation of an intermediate H2K2Ti6O14 phase. The large lattice mismatch between this intermediate phase and the bulk Na2Ti3O7 structure, and the large energy reduction associated with the formation of this intermediate phase, drive the splitting of the bulk crystal into H2K2Ti6O14 NWs. However, these NWs are not stable because of large [TiO6] octahedra distortion and are subject to a dehydration process, which results in uniform K2Ti6O13 NWs with narrowly distributed diameters of around 10 nm.  相似文献   
17.
We have achieved a self-controlled asymmetrical etching in metalorganic chemical vapor deposition-grown InAlAs/InGaAs heterostructures, which can be suitable for fabricating modulation-doped field-effect transistors (MODFETs) with gate-groove profiles for improved performance. The technology is based on electrochemical etching phenomena, which can be effectively controlled by using different surface metals for ohmic electrodes. When surface metals of Pt and Ni are deposited on the source and the drain, respectively, the higher electrode potential of Pt results in slower etching on the source side than on the drain side. Thus, asymmetry of gate grooves can be formed by wet-chemical etching with citric-acid-based etchant. This represents a new possibility to conduct “recess engineering” for InAlAs/InGaAs MODFETs.  相似文献   
18.
New and simple modification of vapor-liquid-solid process for Si nanowires growth based on microwave plasma enhanced chemical vapor deposition that uses solid-state Si target as a source of Si atoms was developed. The method was temperature and pressure controlled evaporation of solid phase of Si source in hydrogen microwave plasma. Aligned growth of Si nanowires was performed in local electric field by applying of constant negative bias to substrate holder. Deposited Si nanowires were studied by scanning electron microscopy (SEM), Raman and photoluminescence spectroscopy. Correlation between photoluminescence spectra and Si nanowires properties were studied.  相似文献   
19.
Hot electron transport across graded compound semiconductor heterojunctions has been explored using a two-dimensional formulation of the self-consistent ensemble Monte Carlo method. The AlxGa1-xAs/GaAs heterojunction imbedded into a vertical field effect transistor with two ohmic contacts (source, drain) and two lateral Schottky gates has been used as an example. Lateral space charges modulated by the gates are shown to control ballistic injection of electrons over the heterojunction under steady state conditions. The transient response to a gate pulse is found to be determined by carrier transit from the heavily doped source contact region into the channel. A conceptual one-dimensional section model is used to explain the Monte Carlo results.  相似文献   
20.
Iodine-loaded poly(silicic acid) gellan nanocomposite film was fabricated and evaluated for antibacterial properties. Poly(silicic acid) nanoparticles were synthesized by condensation of silicic acid under alkaline conditions in the presence of polyvinyl pyrrolidone, phosphate ions, and molecular iodine. The nanoparticles were incorporated into gellan dispersion to prepare gellan nanocomposite film using the solvent casting method. The nanocomposite films were characterized by Fourier transformed infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction studies. The results of characterization studies indicated improved thermal stability and an increase in the degree of crystallinity. The scanning electron micrographs and energy dispersive X-ray spectrum confirmed the uniform dispersion of silica and iodine in the nanocomposite films. The analysis of physical and mechanical properties revealed the enhanced tensile strength, moisture resistance, and higher folding endurance of poly(silicic acid) gellan nanocomposite films as compared to gellan film. Further, the iodine-loaded poly(silicic acid) gellan nanocomposite films showed good antibacterial activity against Staphylococcus aureus and Escherichia coli and effective mucoadhesive strength. The results indicate that iodine-loaded poly(silicic acid) gellan nanocomposite mucoadhesive film can be used for potential antibacterial applications in pharmaceuticals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号